247 research outputs found

    A service-oriented architecture for robust e-voting

    Get PDF

    Students' Satisfaction in Learning Style-Based Adaptation

    Get PDF

    Thermal relaxation in charge ordered Pr0.63_{0.63} Ca0.37_{0.37} MnO3_3 in presence of a magnetic field

    Full text link
    We report observation of substantial thermal relaxation in single crystal of charge ordered system Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3 in an applied magnetic field of H = 8T. The relaxation is observed when the temperature is scanned in presence of a magnetic field in the temperature interval TMH<T<TCOT_{MH}<T<T_{CO} where TCOT_{CO} is the charge ordering temperature and TMHT_{MH} is charge melting temperature in a field. In this temperature range the system has coexisting charged ordered insulator (COI) and ferromagnetic metallic (FMM) phases. No such relaxation is observed in the COI state in H = 0T or in the FMM phase at T<TMHT < T_{MH} in presence of a magnetic field. We conclude that the thermal relaxation is due to two coexisting phases with nearly same free energies but separated by a potential barrier. This barrier makes the transformation from one phase to the other time-dependent in the scale of the specific heat experiment and gives rise to the thermal relaxation.Comment: 4 pages LaTEX, 3 eps figure

    An E-Learning Investigation into Learning Style Adaptivity.

    Get PDF
    Abstrac

    An E-Learning Investigation into Learning Style Adaptivity.

    Get PDF
    Abstrac

    Measurement of the intrinsic damping constant in individual nanodisks of YIG and YIG{\textbar}Pt

    Get PDF
    We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter ϕ=\phi=300, 500 and 700~nm, patterned out of two systems: a 20~nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13~nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG{\textbar}Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant α=4104\alpha = 4 \cdot 10^{-4}. A 3 fold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be G=1.551014 Ω1m2G_{\uparrow \downarrow}= 1.55 \cdot 10^{14}~ \Omega^{-1}\text{m}^{-2} for our YIG(20nm){\textbar}Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.Comment: 4 pages, 3 figure

    Inverse Spin Hall Effect in nanometer-thick YIG/Pt system

    Full text link
    High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for sub-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected

    Evidence of non-degenerated, non-reciprocal and ultra-fast spin-waves in the canted antiferromagnet {\alpha}-Fe2O3

    Full text link
    Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics, as well as new physics based on spin-superfluids and coherent magnon-condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance, a prerequisite that has so far been elusive, because unlike ferromagnets, antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate the electrical detection of ultra-fast non-reciprocal spin-waves in the dipolar-exchange regime of a canted antiferromagnet. Using time-of-flight spin-wave spectroscopy on hematite (alpha-Fe2O3), we find that the magnon wave packets can propagate as fast as 30 km/s for reciprocal bulk spin-wave modes and up to 10 km/s for surface-spin waves propagating parallel to the antiferromagnetic N\'eel vector. The electrical detection of coherent non-reciprocal antiferromagnetic spin waves holds makes hematite a versatile platform where most of the magnonic concepts developed for ferromagnet can be adapted paving the way for the development antiferromagnetic and altermagnet-based magnonic devices

    Hybrid Composition of Web Services and Grid Services

    Get PDF
    Abstract Web service composition is now seen as a focal point of research, especially as mechanisms for the coordination of distributed tasks are acquiring more importance. Models such as BPEL4WS can cater for local and centralised coordination. There is, however, a need to reconcile different technologies on a wider scale. This requires the development of efficient and flexible frameworks in order to ensure the optimal use and coordination of distributed applications. The work presented in this paper is concerned with the development of a compositional framework, which brings together Grid services, Web services and Semantic Web technology within a BPEL4WS platform. It is aimed at enhancing BPEL4WS by allowing for the hybrid composition of Web services and Grid services, and by incorporating dynamic binding through agent mediation. The efficient management of workflows afforded by BPEL4WS is combined with the versatility of agent technology. An agent-based system, called SOA, was developed to support the framework

    Electronic control of the spin-wave damping in a magnetic insulator

    Get PDF
    It is demonstrated that the decay time of spin-wave modes existing in a magnetic insulator can be reduced or enhanced by injecting an in-plane dc current, IdcI_\text{dc}, in an adjacent normal metal with strong spin-orbit interaction. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of IdcI_\text{dc} in a 5~μ\mum diameter YIG(20nm){\textbar}Pt(7nm) disk using a magnetic resonance force microscope (MRFM). Complete compensation of the damping of the fundamental mode is obtained for a current density of 31011A.m2\sim 3 \cdot 10^{11}\text{A.m}^{-2}, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.Comment: 6 pages 4 figure
    corecore